23rd International Mathematical Olympiad 1982 Problems & Solutions



A1.  The function f(n) is defined on the positive integers and takes non-negative integer values. f(2) = 0, f(3) > 0, f(9999) = 3333 and for all m, n:       f(m+n) - f(m) - f(n) = 0 or 1.
Determine f(1982).
A2.  A non-isosceles triangle A1A2A3 has sides a1, a2, a3 with ai opposite Ai. Mi is the midpoint of side ai and Ti is the point where the incircle touches side ai. Denote by Si the reflection of Ti in the interior bisector of angle Ai. Prove that the lines M1S1, M2S2 and M3S3 are concurrent.
A3.  Consider infinite sequences {xn} of positive reals such that x0 = 1 and x0 ≥ x1 ≥ x2 ≥ ... . (a)  Prove that for every such sequence there is an n ≥ 1 such that:
      x02/x1 + x12/x2 + ... + xn-12/xn ≥ 3.999.
(b)  Find such a sequence for which:
      x02/x1 + x12/x2 + ... + xn-12/xn < 4   for all n.
B1.  Prove that if n is a positive integer such that the equation       x3 - 3xy2 + y3 = n
has a solution in integers x, y, then it has at least three such solutions. Show that the equation has no solutions in integers for n = 2891.
B2.  The diagonals AC and CE of the regular hexagon ABCDEF are divided by inner points M and N respectively, so that:       AM/AC = CN/CE = r.
Determine r if B, M and N are collinear.
B3.  Let S be a square with sides length 100. Let L be a path within S which does not meet itself and which is composed of line segments A0A1, A1A2, A2A3, ... , An-1An with A0 = An. Suppose that for every point P on the boundary of S there is a point of L at a distance from P no greater than 1/2. Prove that there are two points X and Y of L such that the distance between X and Y is not greater than 1 and the length of the part of L which lies between X and Y is not smaller than 198. 

Solutions

Problem A1
The function f(n) is defined on the positive integers and takes non-negative integer values. f(2) = 0, f(3) > 0, f(9999) = 3333 and for all m, n:
      f(m+n) - f(m) - f(n) = 0 or 1.
Determine f(1982).
 
Solution
We show that f(n) = [n/3] for n <= 9999, where [ ] denotes the integral part.
We show first that f(3) = 1. f(1) must be 0, otherwise f(2) - f(1) - f(1) would be negative. Hence f(3) = f(2) + f(1) + 0 or 1 = 0 or 1. But we are told f(3) > 0, so f(3) = 1. It follows by induction that f(3n) ≥ n. For f(3n+3) = f(3) + f(3n) + 0 or 1 = f(3n) + 1 or 2. Moreover if we ever get f(3n) > n, then the same argument shows that f(3m) > m for all m > n. But f(3.3333) = 3333, so f(3n) = n for all n <= 3333.
Now f(3n+1) = f(3n) + f(1) + 0 or 1 = n or n + 1. But 3n+1 = f(9n+3) ≥ f(6n+2) + f(3n+1) ≥ 3f(3n+1), so f(3n+1) < n+1. Hence f(3n+1) = n. Similarly, f(3n+2) = n. In particular f(1982) = 660. 

Problem A2
A non-isosceles triangle A1A2A3 has sides a1, a2, a3 with ai opposite Ai. Mi is the midpoint of side ai and Ti is the point where the incircle touches side ai. Denote by Si the reflection of Ti in the interior bisector of ∠Ai. Prove that the lines M1S1, M2S2 and M3S3 are concurrent.
 
Solution
Let Bi be the point of intersection of the interior angle bisector of the angle at Ai with the opposite side. The first step is to figure out which side of Bi Ti lies. Let A1 be the largest angle, followed by A2. Then T2 lies between A1 and B2, T3 lies between A1 and B3, and T1 lies between A2 and B1. For ∠OB2A1 = 180o - A1 - A2/2 = A3 + A2/2. But A3 + A2/2 < A1 + A2/2 and their sum is 180o, so A3 + A2/2 < 90o. Hence T2 lies between A1 and B2. Similarly for the others.
Let O be the center of the incircle. Then ∠T1OS2 = ∠T1OT2 - 2 ∠T2OB2 = 180o - A3 - 2(90o - ∠OB2T2) = 2(A3 + A2/2) - A3 = A2 + A3. A similar argument shows ∠T1OS3 = A2 + A3. Hence S2S3 is parallel to A2A3.
Now ∠T3OS2 = 360o - ∠T3OT1 - ∠T1OS2 = 360o - (180o - A2) - (A2 + A3) = 180o - A3 = A1 + A2. ∠T3OS1 = ∠T3OT1 + 2 ∠T1OB1 = (180o - A2) + 2(90o - ∠OB1T1) = 360o - A2 - 2(A3 + A1/2) = 2(A1 + A2 + A3) - A2 - 2A3 - A1 = A1 + A2 = ∠T3OS2. So S1S2 is parallel to A1A2. Similarly we can show that S1S3 is parallel to A1A3.
So S1S2S3 is similar to A1A2A3 and turned through 180o. But M1M2M3 is also similar to A1A2A3 and turned through 180o. So S1S2S3 and M1M2M3 are similar and similarly oriented. Hence the lines through corresponding vertices are concurrent. 

Problem A3
Consider infinite sequences {xn} of positive reals such that x0 = 1 and x0 ≥= x1 ≥ x2 ≥ ... .
(a)  Prove that for every such sequence there is an n ≥ 1 such that:
      x02/x1 + x12/x2 + ... + xn-12/xn ≥ 3.999.
(b)  Find such a sequence for which:
      x02/x1 + x12/x2 + ... + xn-12/xn < 4   for all n.
 
Solution
(a)  It is sufficient to show that the sum of the (infinite) sequence is at least 4. Let k be the greatest lower bound of the limits of all such sequences. Clearly k ≥ 1. Given any ε > 0, we can find a sequence {xn} with sum less than k + ε. But we may write the sum as:
x02/x1 + x1( (x1/x1)2/(x2/x1) + (x2/x1)2/(x3/x1) + ... + (xn/x1)2/(xn+1/x1) + ... ).
The term in brackets is another sum of the same type, so it is at least k. Hence k + ε > 1/x1 + x1k. This holds for all ε > 0, and so k ≥ 1/x1 + x1k. But 1/x1 + x1k ≥ 2√k, so k ≥ 4.
(b)  Let xn = 1/2n. Then x02/x1 + x12/x2 + ... + xn-12/xn = 2 + 1 + 1/2 + ... + 1/2n-2 = 4 - 1/2n-2 < 4. 

Problem B1
Prove that if n is a positive integer such that the equation
      x3 - 3xy2 + y3 = n
has a solution in integers x, y, then it has at least three such solutions. Show that the equation has no solutions in integers for n = 2891.
 
Solution
If x, y is a solution then so is y-x, -x. Hence also -y, x-y. If the first two are the same, then y = -x, and x = y-x = -2x, so x = y = 0, which is impossible, since n > 0. Similarly, if any other pair are the same.
2891 = 2 (mod 9) and there is no solution to x3 - 3xy2 + y3 = 2 (mod 9). The two cubes are each -1, 0 or 1, and the other term is 0, 3 or 6, so the only solution is to have the cubes congruent to 1 and -1 and the other term congruent to 0. But the other term cannot be congruent to 0, unless one of x, y is a multiple of 3, in which case its cube is congruent to 0, not 1 or -1. 

Problem B2
The diagonals AC and CE of the regular hexagon ABCDEF are divided by inner points M and N respectively, so that:
      AM/AC = CN/CE = r.
Determine r if B, M and N are collinear.
 
Solution
For an inelegant solution one can use coordinates. The advantage of this type of approach is that it is quick and guaranteed to work! Take A as (0,√3), B as (1,√3), C as (3/2,√3/2, D as (1,0). Take the point X, coordinates (x,0), on ED. We find where the line BX cuts AC and CE. The general point on BX is (k + (1-k)x,k√3). If this is also the point M with AM/AC = r then we have: k + (1-k)x = 3r/2, k√3 = (1-r)√3 + r√3/2. Hence k = 1 - r/2, r = 2/(4-x). Similarly, if it is the point N with CN/CE = r, then k + (1-k)x = 3(1-r)/2, k√3 = (1-r)√3/2. Hence k = (1-r)/2 and r = (2-x)/(2+x). Hence for the ratios to be equal we require 2/(4-x) = (2-x)/(2+x), so x2 - 8x + 4 = 0. We also have x < 1, so x = 4 - √12. This gives r = 1/√3.
A more elegant solution uses the ratio theorem for the triangle EBC. We have CM/MX XB/BE EN/NC = -1. Hence (1-r)/(r - 1/2) (-1/4) (1-r)/r = -1. So r = 1/√3. 

Problem B3
Let S be a square with sides length 100. Let L be a path within S which does not meet itself and which is composed of line segments A0A1, A1A2, A2A3, ... , An-1An with A0 = An. Suppose that for every point P on the boundary of S there is a point of L at a distance from P no greater than 1/2. Prove that there are two points X and Y of L such that the distance between X and Y is not greater than 1 and the length of the part of L which lies between X and Y is not smaller than 198.
 
Solution
Let the square be A'B'C'D'. The idea is to find points of L close to a particular point of A'D' but either side of an excursion to B'.
We say L approaches a point P' on the boundary of the square if there is a point P on L with PP' ≤ 1/2. We say L approaches P' before Q' if there is a point P on L which is nearer to A0 (the starting point of L) than any point Q with QQ' ≤ 1/2.
Let A' be the first vertex of the square approached by L. L must subsequently approach both B' and D'. Suppose it approaches B' first. Let B be the first point on L with BB' ≤ 1/2. We can now divide L into two parts L1, the path from A0 to B, and L2, the path from B to An.
Take X' to be the point on A'D' closest to D' which is approached by L1. Let X be the corresponding point on L1. Now every point on X'D' must be approached by L2 (and X'D' is non-empty, because we know that D' is approached by L but not by L1). So by compactness X' itself must be approached by L2. Take Y to be the corresponding point on L2. XY ≤ XX' + X'Y ≤ 1/2 + 1/2 = 1. Also BB' ≤ 1/2, so XB ≥ X'B' - XX' - BB' ≥ X'B' - 1 ≥ A'B' - 1 = 99. Similarly YB ≥ 99, so the path XY ≥ 198.
Read more

50th IMO - 50 Years of International Mathematical Olympiads 
Solutions are also available in     Murray S Klamkin, International Mathematical Olympiads 1978-1985, MAA 1986, and in   István Reiman, International Mathematical Olympiad 1959-1999, ISBN 189-8855-48-X.


School Exercise Books

 
Return to top of page Copyright © 2010 Copyright 2010 (C) High School Math - high school maths - math games high school - high school math teacher - high school geometry - high school mathematics - high school maths games - math high school - virtual high school - jefferson high school - high school online www.highschoolmath.info. All right reseved.