21st Vietnamese Mathematical Olympiad 1983 Problems



21st Vietnamese Mathematical Olympiad 1983 Problems

 A1.  For which positive integers m, n with n > 1 does 2n - 1 divides 2m + 1?
A2.  (1) Show that (sin x + cos x) √2 ≥ 2 sin(2x)1/4 for all 0 ≤ x ≤ π/2.
(2) Find all x such that 0 < x < π and 1 + 2 cot(2x)/cot x ≥ tan(2x)/tan x.


A3.  P is a variable point inside the triangle ABC. D, E, F are the feet of the perpendiculars from P to the sides of the triangles. FInd the locus of P such that the area of DEF is constant. 

B1.  For which n can we find n different odd positive integers such that the sum of their reciprocals is 1? 

B2.  Let sn = 1/((2n-1)2n) + 2/((2n-3)(2n-1)) + 3/((2n-5)(2n-2)) + 4/((2n-7)(2n-3) + ... + n/(1(n+1)) and tn = 1/1 + 1/2 + 1/3 + ... + 1/n. Which is larger? 

B3.  ABCD is a tetrahedron with AB = CD. A variable plane intersects the tetrahedron in a quadrilateral. Find the positions of the plane which minimise the perimeter of the quadrilateral. Find the locus of the centroid for those quadrilaterals with minimum perimeter.



School Exercise Books

 
Return to top of page Copyright © 2010 Copyright 2010 (C) High School Math - high school maths - math games high school - high school math teacher - high school geometry - high school mathematics - high school maths games - math high school - virtual high school - jefferson high school - high school online www.highschoolmath.info. All right reseved.